A-Level Physics

Paper 1

Unsolved Topical

Past Papers with Marking Schemes

All Variants

2014-2021

Title A-LEVEL UNSOLVED TOPICAL PHYSICS PAPER 1

Published by MS Books (042-35774780)

Legal Advisor Ashir Najeeb Khan (Advocate)

AKBAR LAW CHAMBERS

39-40, 1st Floor, Sadiq Plaza, The Mall, Lahore.

0307-4299886, 042-36314839

For Complaints/Order MS Books

83-B Ghalib Market, Gulberg III Lahore

(042-35774780), (03334504507), (03334548651)

PREFACE

Excellence in learning cannot be claimed without application of concepts in a dexterous way. In this regard one of the logical approach is to start in chunks; like chapter wise learning and applying the concept on exam based questions.

This booklet provides an opportunity to candidates to practice topic wise questions from previous years to the latest. Extensive working of Team MS Books has tried to take this booklet to perfection by collaborating with top of the line teachers.

We have added answer key / marks scheme at the end of each topic for the candidate to compare the hfis/her answer to the best.

MS Books strives to maintain actual spacing between consecutive questions and within options as per CAIE format which gives students a more realistic feel of attempting question.

Review, feedback and contribution in this booklet by various competent teachers of a subject belonging to renowned school chains make it most valuable resource and tool for both teachers and students.

With all belief in strength of this resource material I can confidently claim that it is worth in achieving brilliance.

Our sincere thanks and gratification to Mr. Syed Jabran Ali Kamran who took out special time to help compile and manage this booklet. We would also like to appreciate physics faculty for reviewing and indorsing it.

REVIEWED & RECOMMENDED BY

Syed Jabran Ali Kamran

LGS (Phase 5 & paragon), LACAS (Gulberg, Barki, JT) 0336-4864345

Mirza Irshad Baig

SICAS, Bloomfield Hall, LACAS, MGS 0333-4205837

Aamir Mustafa

LACAS, LGS (Gulberg & JT), BSS 0321-4621091

Muhammad Arshad Chaudhry

Ex-Aithison, LGS (JT & 1A1), LACAS BSS ALJT, Pak Turk 0300-9412902

Muhammad Javed Sulehri

BDC, LGS (Paragon & Gulberg), ROOTS IVY, The City School (ALGC) 0333-4224165

Nausher Shahzad Alam

Yale, Durham, GIKI, University of London LGS Defence, BCCG, The City School 0322-8470000

Abdul Hakeem

LGS, BSS, ALMA 0300-4810136

CONTENT TABLE

	TOPICS	Pg#
1.	Physical Quantities and Units	7
2.	Measurement Techniques	22
3.	Kinematics	61
4.	Dynamics	104
5.	Forces, Density and Pressure	140
6.	Work, Energy and Power	209
7.	Deformation of Solids	249
8.	Waves	285
9.	Superposition	357
10.	Electric Fields	397
11.	Current Electricity	425
12.	D.C. Circuits	473
13.	Particle and Nuclear Physics	524

Physical Quantities and Units

Q1/P12/M/J/14, Q2/P13/O/N/17

1 The maximum theoretical power P of a wind turbine is given by the equation

$$P = k \rho A v^n$$

where ρ is the density of air, A is the area swept by the turbine blades, v is the speed of the air and *k* is a constant with no units.

What is the value of *n*?

A 1

B 2

C 3

D 4

Q2/P12/M/J/14

2 What is the unit of resistance when expressed in SI base units?

A $ka m^2 s^{-2} A^{-1}$

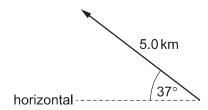
B $kg m^2 s^{-3} A^{-2}$ **C** $kg m s^{-2} A^{-1}$

D $kg m s^{-3} A^{-1}$

Q2/P13/M/J/14

The unit of specific heat capacity is J kg⁻¹ K⁻¹.

What is its equivalent in terms of SI base units?


A $kg^{-1}m^2K^{-1}$

B m s⁻¹ K⁻¹

C $m s^{-2} K^{-1}$ **D** $m^2 s^{-2} K^{-1}$

Q3/P13/M/J/14, Q2/P12/O/N/17

4 What is the vertical component of this displacement vector?

A 3.0 km

3.8 km

4.0 km

5.0 km

Q1/P12/O/N/14

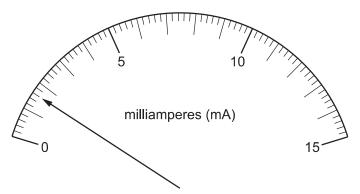
A 0.10 kg mass is taken to Mars and then weighed on a spring balance and on a lever balance. The acceleration due to gravity on Mars is 38% of its value on Earth.

What are the readings on the two balances on Mars? (Assume that on Earth $g = 10 \,\mathrm{m\,s^{-2}}$.)

	spring balance / N	lever balance/kg
Α	0.38	0.038
В	0.38	0.10
С	1.0	0.038
D	1.0	0.10

Q2/P12/O/N/14

6 What is equivalent to the unit of electric field strength?


A JCm⁻¹

B NsA⁻¹

C $kg m s^{-3} A^{-1}$ **D** $kg m^3 s^{-3} A^{-1}$

Q3/P12/O/N/14

7 The diagram shows the reading on an analogue ammeter.

Which digital ammeter reading is the same as the reading on the analogue ammeter?

	display units	display units display reading		
Α	μΑ	1600		
В	μΑ	160		
С	mA	16.0		
D	А	1.60		

Q1/P13/O/N/14

When the brakes are applied on a vehicle moving at speed v, the distance d moved by the vehicle in coming to rest is given by the expression

 $d = kv^2$

where *k* is a constant.

What is the unit of *k* expressed in SI base units?

 $A m^{-1} s^2$

B $m s^{-2}$ **C** $m^2 s^{-2}$

D $m^{-1}s$

Q2/P13/O/N/14

Which list contains one vector quantity and two scalar quantities?

A displacement, weight, velocity C momentum, mass, speed

B force, acceleration, time

D work, density, energy

Q2/P12/M/J/15

10 The average kinetic energy *E* of a gas molecule is given by the equation

$$E = \frac{3}{2}kT$$

where *T* is the absolute (kelvin) temperature.

What are the SI base units of k?

A $kg^{-1}m^{-1}s^{2}K$

 $C \text{ kg m s}^{-2} \text{K}^{-1}$

 $kq^{-1} m^{-2} s^2 K$

Q1/P13/M/J/15

11 Which statement includes a correct unit?

 \mathbf{A} energy = 7.8 Ns

C momentum = 6.2 Ns

B force = $3.8 \, \text{Ns}$

torque = $4.7 \,\mathrm{Ns}$

Q2/P13/M/J/15

12 What is the joule (J) in SI base units?

 $\mathbf{A} \quad \text{kg m s}^{-1}$

B $kg m^2 s^{-1}$ **C** $kg m s^{-2}$ **D** $kg m^2 s^{-2}$

Q3/P13/M/J/15

13 The speed of an aeroplane in still air is 200 km h⁻¹. The wind blows from the west at a speed of $85.0 \,\mathrm{km}\,\mathrm{h}^{-1}$.

In which direction must the pilot steer the aeroplane in order to fly due north?

A 23.0° east of north

25.2° east of north

23.0° west of north

D 25.2° west of north

Q1/P12/O/N/15

14 Which list shows increasing lengths from beginning to end?

1 mm

1 nm

A 1cm 1 nm 1 nm $1 \mu m$ 1 mm 1cm

В $1 \mu m$ 1 mm

 $1 \mu m$ 1 cm

1 mm 1 cm $1 \mu m$

1nm

Q2/P12/O/N/15

15 Which equation contains only scalar quantities?

acceleration = force

pressure = $\frac{\text{force}}{\text{area}}$

power = $\frac{\text{work}}{\text{time}}$

velocity = $\frac{\text{displacement}}{\text{time}}$

Q3/P12/O/N/15

16 The time T taken for a satellite to orbit the Earth on a circular path is given by the equation

$$T^2 = \frac{kr^3}{M}$$

where r is the radius of the orbit, M is the mass of the Earth and k is a constant.

What are the SI base units of k?

A $ka^{-1}m^{-3}s^2$

B $kg^{-1}m^3s^2$ **C** $kg m^{-3}s^2$ **D** $kg m^3s^2$

Q1/P13/O/N/15

17 What is the unit of the Young modulus when expressed in SI base units?

A $ka m^{-1} s^{-2}$

B $kam^3 s^{-2}$

 \mathbf{C} ka m⁻²

D $kg m^{-1} s^{-1}$

Q2/P13/O/N/15

18 The Reynolds number R is a constant used in the study of liquids flowing through pipes. R is a pure number with no unit.

$$R = \frac{\rho vD}{\mu}$$

where ρ is the density of the liquid, ν is the speed of the liquid and D is the diameter of the pipe through which the liquid flows.

What are the SI base units of μ ?

A kgms

B $kg m^{-1} s$ **C** $kg m s^{-1}$ **D** $kg m^{-1} s^{-1}$

ANSWER KEY

Sr#	Key	Sr#	Key	Sr#	Key
1.	С	31.	D	61.	С
2.	В	32.	Α	62.	С
3	D	33_	В	63 _	Α
4	Α	34₋	Α	64-	Α
5,	В	35.	D	65.	D
6,	С	36.	С	66.	D
7.	Α	37.	D	67.	В
8,	Α	38.	С	68.	С
9	С	39_	С	69 _	С
10-	D	40-	Α	70-	В
11.	С	41.	Α	71.	В
12.	D	42.	С	72.	С
13.	D	43.	В	73.	Α
14.	С	44.	В	74.	С
15 _	В	45 _	D	75 ₋	D
16-	С	46-	D		
17.	Α	47.	В		
18.	D	48.	Α		
19.	С	49.	В		
20.	С	50.	В		
21_	Α	51 _	С		
22 _	D	52 _	С		
23.	В	53.	Α		
24.	В	54.	В		
25.	D	55.	С		
26.	D	56.	Α		
27 _	D	57 _	Α		
28 _	В	58 _	D		
29.	Α	59.	В		
30.	D	60.	D		