A-Level Chemistry

Paper 1

Unsolved Topical

Past Papers with Marking Schemes

All Variants

2014-2021

Title A-LEVEL TOPICAL CHEMISTRY PAPER 1

Published by MS Books (042-35774780)

Legal Advisor Ashir Najeeb Khan (Advocate)

AKBAR LAW CHAMBERS

39-40, 1st Floor, Sadiq Plaza, The Mall, Lahore.

0307-4299886, 042-36314839

For Complaints/Order MS Books

83-B, Ghalib Market, Gulberg III Lahore

(042-35774780), (03334504507), (03334548651)

PREFACE

Excellence in learning cannot be claimed without application of concepts in a dexterous way. In this regard one of the logical approach is to start in chunks; like chapter wise learning and applying the concept on exam based questions.

This booklet provides an opportunity to candidates to practice topic wise questions from previous years to the latest. Extensive working of Team MS Books has tried to take this booklet to perfection by collaborating with top of the line teachers.

We have added answer key / marks scheme at the end of each topic for the candidate to compare the his/her answer to the best.

MS Books strives to maintain actual spacing between consecutive questions and within options as per CAIE format which gives students a more realistic feel of attempting question.

Review, feedback and contribution in this booklet by various competent teachers of a subject belonging to renowned school chains make it most valuable resource and tool for both teachers and students.

With all belief in strength of this resource material I can confidently claim that it is worth in achieving brilliance.

Our sincere thanks and gratification to Mr. Waqar Ahmad who took out special time to help compile and manage this booklet. We would also like to appreciate chemistry faculty for reviewing and indorsing it.

REVIEWED & RECOMMENDED BY

Μı	ıh	am	m	2	A	Λ	H
IVII	ın.	am	ım	а		Д	ш

University of Cambridge, University of Wales LGS Defence (Phase 1&5), LGS Paragon, LACAS, BCCG, The City School CLC 0321-8859967

Zafar Iqbal

LACAS (Barki & JT) BSS ALJT, KIMS, Crescent, LGS Paragon, ROOTS IVY DHA Ph.5 0333-4227604

Waqar Ahmad

LACAS, ROOTS Millenieum, Frobels International 0334-9543124

Kashif Ali Sehgal

LGS DHA & JT, City RAVI, ROOTS Millenieum, EX-BSS, EX-Aitchison 0322-4828628

Qammar Fayyaz

LGS JT (Boys & Girls), City RAVI 0300-4266857

Tanvir Gill

BDC & BCCG 0301-4574832

TABLE OF CONTENTS

Sr#	Chapters	Pg#
1.	Atoms, Molecules & Stoichiometry	7
2	Atomic Structure	26
3.	Chemical Bonding	54
4.	States of Matter	82
5.	Chemical Energetics	94
7.1	Chemical Equilibria	121
7.2	Ionic Equilibria	150
8.	Reaction Kinetics	153
8.3	Homogeneous & Heterogeneous Catalysts	181
9.	Chemical Periodicity (Period 3)	187
10.	Group 2	209
11.	Halogen & Halide (Group 17)	232
13	Nitrogen & Sulfur	257
14.4	Isomerism: Structural & Stereoisomerism	275
15.1	Alkane	294
15.2	Alkenes	305
16.	Halogen Derivatives	321
17.1	Alcohols	355
18.	Carbonyl Compounds	385
19.	Carboxylic Acids & Derivatives	423
21.	Polymerisation	463
22.2	Infra-Red Spectroscopy	468
23.	Electrochemistry	482

Atoms, Molecules & Stoichiometry

Q18/11	1/IV	1/.	I/1	4
--------	------	-----	-----	---

1 Use of the Data Booklet is relevant to this question.

A chemist took 2.00 dm³ of nitrogen gas, measured under room conditions, and reacted it with a large volume of hydrogen gas, in order to produce ammonia. Only 15.0% of the nitrogen gas reacted to produce ammonia.

What mass of ammonia was formed?

A 0.213g **B** 0.425g **C** 1.42g **D** 2.83g

Q9/12/M/J/14

2 Use of the Data Booklet is relevant to this question.

In an experiment, 12.0 dm³ of oxygen, measured under room conditions, is used to burn completely 0.10 mol of propan-1-ol.

What is the final volume of gas, measured under room conditions?

A $7.20 \, \text{dm}^3$ **B** $8.40 \, \text{dm}^3$ **C** $16.8 \, \text{dm}^3$ **D** $18.00 \, \text{dm}^3$

Q17/13/M/J/14

3 Use of the Data Booklet is relevant to this question.

In an experiment, 0.6 mol of chlorine gas, Cl_2 , is reacted with an excess of hot aqueous sodium hydroxide. One of the products is a compound of sodium, oxygen and chlorine.

Which mass of this product is formed?

A 21.3g **B** 44.7g **C** 63.9g **D** 128g

Q6/12/O/N/14

4 Aluminium carbide, Al_4C_3 , reacts readily with aqueous sodium hydroxide. The two products of the reaction are NaA lO_2 and a hydrocarbon. Water molecules are also involved as reactants.

What is the formula of the hydrocarbon?

A CH₄ **B** C₂H₆ **C** C₃H₈ **D** C₆H₁₂

Q15/12/O/N/14

5 Use of the Data Booklet is relevant to this question.

A sample of potassium oxide, K₂O, is dissolved in 250 cm³ of distilled water. 25.0 cm³ of this solution is titrated against sulfuric acid of concentration 2.00 mol dm⁻³. 15.0 cm³ of this sulfuric acid is needed for complete neutralisation.

Which mass of potassium oxide was originally dissolved in 250 cm³ of distilled water?

A 2.83g **B** 28.3g **C** 47.1g **D** 56.6g

Q29/12/O/N/14

6 Which equation correctly represents the balanced equation for the complete combustion of a hydrocarbon with the formula C_xH_v ?

A
$$C_xH_y + (x + \frac{y}{2})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

B
$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + yH_2O_3$$

$${\bm C} \quad C_x H_y \ + \ (x + \frac{y}{4}) O_2 \ \to \ x C O_2 \ + \ \frac{y}{4} \, H_2 O$$

D
$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

Q6/13/O/N/14

7 Use of the Data Booklet is relevant to this question.

In some countries, anhydrous calcium chloride is used as a drying agent to reduce dampness in houses. The anhydrous salt absorbs enough water to form the dihydrate $CaCl_2.2H_2O$.

What is the percentage increase in mass?

- **A** 14%
- **B** 24%
- **C** 32%
- **D** 36%

Q8/13/O/N/14

8 Use of the Data Booklet is relevant to this question.

Ferrochrome is an alloy of iron and chromium. Ferrochrome can be dissolved in dilute sulfuric acid to produce a mixture of $FeSO_4$ and $Cr_2(SO_4)_3$. The $FeSO_4$ reacts with $K_2Cr_2O_7$ in acid solution according to the following equation.

$$14H^{+} + 6Fe^{2+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_{2}O_{7}^{2-}$$

When 1.00 g of ferrochrome is dissolved in dilute sulfuric acid, and the resulting solution titrated, $13.1 \, \text{cm}^3$ of $0.100 \, \text{mol dm}^{-3} \, \text{K}_2 \text{Cr}_2 \text{O}_7$ is required for complete reaction.

What is the percentage by mass of Fe in the sample of ferrochrome?

- **A** 1.22
- **B** 4.39
- C 12.2
- **D** 43.9

Q2/12/M/J/15

9 The shell of a chicken's egg makes up 5% of the mass of an average egg. An average egg has a mass of 50 g.

Assume the egg shell is pure calcium carbonate.

How many complete chicken's egg shells would be needed to neutralise 50 cm³ of 2.0 meldm⁻³ ethanoic acid?

- **A** 1
- **B** 2
- **C** 3

Q29/12/M/J/15

10 Citric acid is found in lemon juice.

HO₂CCH₂C(OH)(CO₂H)CH₂CO₂H

citric acid

What is the volume of 0.4 mol dm⁻³ sodium hydroxide solution required to neutralise a solution containing 0.005 mol of citric acid?

A 12.5 cm³

B 25.0 cm³

C $37.5 \, \text{cm}^3$

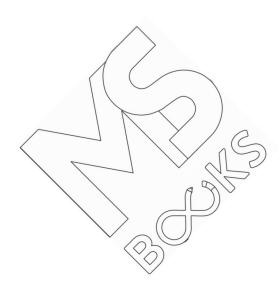
D $50.0\,\mathrm{cm}^3$

Q10/13/M/J/15

11 Use of the Data Booklet is relevant to this question.

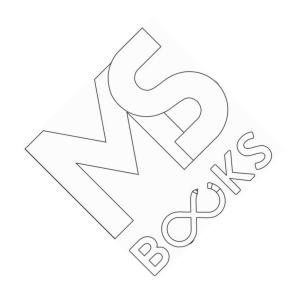
 $1.00\,\mathrm{g}$ of a metallic element reacts completely with $300\,\mathrm{cm}^3$ of oxygen at $298\,\mathrm{K}$ and $1\,\mathrm{atm}$ pressure to form an oxide which contains 0^{2^-} ions.

The volume of one mole of gas at this temperature and pressure is 24.0 dm³.


What could be the identity of the metal?

A calcium

B magnesium


C potassium

D sodium

ANSWER KEYS

Sr#	Key	Sr#	Key	Sr#	Key	Sr#	Key
1.	В	21.	С	41.	Α	61.	С
2.	В	22.	В	42.	Α	62.	С
3.	Α	23.	С	43.	С	63.	Α
4.	Α	24.	Α	44.	В	64.	D
5.	В	25.	В	45.	D	65.	Α
6.	D	26.	В	46.	С	66.	С
7.	С	27.	D	47.	D	67.	Α
8.	D	28.	В	48.	В	68.	С
9.	В	29.	В	49.	В	69.	С
10.	С	30.	С	50.	В		
11.	Α	31.	D	51.	Α		
12.	В	32.	D	52.	С		
13.	С	33.	В	53.	С		
14.	В	34.	С	54.	D		
15.	С	35.	В	55.	С		
16.	D	36.	С	56.	С		
17.	В	37.	D	57.	Α		
18.	С	38.	D	58.	С		
19.	D	39.	В	59.	В		
20.	Α	40.	С	60.	Α		

