O-Level Mathematics

Notes

Edition 2020

Rafique Akthar Baloch

(0300-4897003)

Visiting Teacher

LACAS

All rights reserved. No part of this publication may be reproduced, Stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Title O-L MATHEMATICS NOTES

Author RAFIQUE AKTHAR BALOCH (0300-4897003)

Published by MS Books (042-35774780)

Legal Advisor Ashir Najeeb Khan (Advocate High Court)

AKBAR LAW CHAMBERS

39-40, 1st Floor, Sadiq Plaza, The Mall, Lahore

042-36314839, 0307-4299886

For Complaints/Order MS Books

177-A1 Link M.M Alam Road, Near Ghalib Market Gulberg III

Lahore

msbookss@gmail.com www.msbooks.net

(042-35774780),(03334504507),(03334548651)

Price Rs. 890/-

Preface

This book has been designed for O Level students. It covers latest syllabus prescribed by CIE . I tried to make an attempt to present the material in a simple, clear and straightforward way. Three procedures are indispensable in the enjoyment and success in Mathematics: understanding, memorization and practice. The purpose of this book is to help the students in doing these. A large number of practice questions from past papers examination has been provided to help the students in learning of step-by-step procedure of problem solving. This will enable students to revise and practice systematically. Students are urged to grapple with these questions for acquiring solid understanding.

Thanks are due to the LACAS family for providing professional environment and Ms Nausheen Khan to assist in logical thinking. I acknowledge with thanks the generous cooperation by Mr Aamir Mustafa, Mr Asghar Hayat, Mr Qamar Fayyaz, Mr Zahid Amin and my son Junaid Rafique. I regret any error and misprints and pledge to correct these in my next edition.

Sincerely Yours

Rafique Akhtar Baloch (0300-4897003)

Salient Features of the Book

- Each topic consists of basic skills and comprehensive notes which are helpful to solve the questions.
- 2. All topics of syllabus are arranged in a manner which keep the learner's interest alive.
- 3. There is penalty of practice questions at the end of each topic.
- 4. Answers of all practice questions are given at the end, so that the students can easily analysis their performance.
- 5. Useful tips are given to solve questions in minimum time.
- 6. Some Practice questions are given with marks allocation
- 7 At the end formulae sheet is given for complete preparation

Dedicated to

"My family"

Contents

1 Numbers	6
2 Indices and Standard form	17
3 Everyday Mathematics	31
4 Time	55
5 Algebraic Expressions and Quadratic Equ	uations 61
6 Limits of Accuracy	84
7 Variation and Symmetry	95
8 Congruency and Similarity	108
9 Coordinate Geometry	121
10 Inequalities	134
11 Matrices	143
12 Function	158
13 Angles of Polygon	165
14 Geometrical Properties of Circle	178
15 Set Language and Notation	196
16 Sequence and Pattern	213
17 Trigonometry and 3- Dimensional Proble	ems 230
18 Bearing	254
19 Geometrical Figure Nets	262
20 Mensuration	269
21 Statistics	292
22 Scatter diagram	334
23 Graphs of Function	343
24 Kinematics	365
25 Loci and Construction	382
26 Vectors	395
27 Probability	412
28 Transformation	435

Numbers

Natural Number

Numbers which are used for counting purpose are called natural numbers Ex: 1, 2, 3, 4,100,

Whole Number:

Natural numbers including 0 are called whole numbers Exp: 0, 1, 2, 3, 4,

Integers:

Positive natural numbers negative natural numbers along with 0 are called integers.

Exp: -4, -3, -2,-1, 0, 1, 2, 3, 4,

Rational Numbers:

Numbers which are in the form of $\frac{p}{q}$ (q \neq 0) where p and q are positive or negative whole

number are called as rational numbers. Exp: $\frac{1}{2}$, $\frac{3}{4}$, $\frac{-5}{7}$, $\frac{49}{-56}$,......

Irrational Number:

Number like $\sqrt{2}$, π cannot be expressed as rational numbers. Such type of numbers are called as irrational numbers $\exp:\sqrt{5},\sqrt{17},...$

Terminating Decimals:

These are decimals numbers which stop after a certain number of decimal places, for example, 7/8=0.875, is a terminating decimals because it stop (terminates) after 3 decimal places.

Recurring Decimals:

These are same decimal numbers which keep repeating a digit or group of digits: for example 137/259=0.528957528957528957........... is a recurring decimals, the six digits 528957 repeat in this order. Recurring decimals are written with dots over the first and last digit of the repeating digits, e.g 0.528957

The order of operations follows the BODMAS rule-

Brackets (Parentheses)

of (Orders i.e Powers and square roots, Cube roots etc)

Divide

Multiply

Add

Subtract

- Even numbers: numbers which are exactly divisible by 2, e.g 0,2,4,6,8,.....
- Odd numbers: numbers which are not exactly divisible by 2, e.g; 1,3,5,7,.....
- · Real Numbers are made of all possible ratioal and irrational numbers
- · An integers is a whole number
- A prime number is divisible only by itself and by one(1). 1 is not a prime number.
 It has only two factors. 1 and the number itself.
- The exact value of rational number can be written down as the ratio of two whole numbers

- · The exact value of an irrational number cannot be written down.

- The factors of a number are the numbers which divide exactly into two Exp: Factor of 36 are
 1,2,3,4,6,9,12,18,36
- Multiples of a number are the numbers in its times table
 Exp: multiples of 6 are 6,12,18,24,30.....

Significant figures:

Examples:

8064=8000 (correct to 1 significant figures)
8064=8100 (correct to 2 significant figures)
8064=8060 (correct to 3 significant figures)
0.00508=0.005 (correct to 1 significant figures)
0.00508=0.0051(correct to 2 significant figures)
2.00508=2.01 (correct to 3 significant figures)

Decimal Places

Examples:

0.0647=0.1 (correct to 1 Decimal places)
0.0647=0.06(correct to 2 Decimal places)
0.0647=0.065 (correct to 3 Decimal places)
2.0647=2.065 (correct to 3 Decimal places)

Summary

- 1 To write the different numbers in ascending or descending orde, first change all given numbers in decimal form then write it in required order by replacing them in original given form.
- 2 To find the smallest integer value of n in given multiple. First change them into product of prime number and then compare all prime factors in given multiple. The product of missing numbers is required value of n. Exp: smallest interger value of n for which 54n is the multiple of 14.

54n=2x3x3x3xn, 14 =2x7=>n=7

- Square numbers: when a number is multiplied by itself two time. Then its answer is called square number or the number when its square roots is in whole number Exp 2x2=4, 3x3=9, 7x7=49,4,9,49 are square number
- 5 Cube Numbers

Cube roots of any number is whole number or answer of number, when multiplied it 3 times. To find value of unknown variable, write each term with power of 3. Product of missing number is answer.

6 Rational numbers: The number which can be written into the fraction of whole number with non zero denominator.

Exp
$$2,\frac{2}{3}, \frac{5}{4}$$
etc

7 Irrational Numbers: all numbers in root whose answer is not a whole number and π is also irrational number but $\frac{22}{7}$ is ratinal number

Exp:
$$\sqrt{2}$$
, π , $\sqrt{\frac{7}{3}}$ etc

- 8 Largest or maximum integer which is factor or highest common factor means HCF and smallest multiple or minimum interger which is multiple or lowest common multiples mean LCM,
- 9 Significant figure means number of non-zero digits counted from left to right. if nearest right digit to the last digit of answer is 5 or more then 5 then add 1 in last digit other wise remain same, and put zero in the place of eleminated digits before decimal.
- 10 Decimal place means number of digits count after decimal from left to right.

Exp: 2537.43, 1843.56

One significant figure Two significant figure One Decimi Places
3000. 2500. 2537.4
2000. 1800.1843.6

In Index Form

11 H.C.F

Product of only common terms with smallest power

12 L.C.M

Product of common terms with largest power and all non-common terms

To find value of unknown variable in **HCF** or **LCM** use comparison method for power of terms with prime factors.

13 Composite Number

Any number divisible by any other number than itself or by 1.

14 Rounding off

Decimal places

Number of digits space counted from left to right after decimal

II. Significant figures

No of non-zero digits counted form left to right

- Before decimal make all ignore digits zero
- · After decimal don't put zero for ignore digits

15 Estimation

Round off each number, such that its simplification is possible

Practice Questions

Paper - 1

- 1 (a) Evaluate $12 + 8 \div (9 5)$. [1]
 - (b) Evaluate $0.018 \div 0.06$. [1]
- 2 (a) Evaluate $3\frac{1}{4} 1\frac{4}{5}$. [1]
 - **(b)** Evaluate 3.01×0.02 . [1]
- 3 (a) Evaluate $\frac{1}{7} + \frac{3}{4}$. [1]
 - (b) Evaluate $5\frac{1}{3} \div 1\frac{3}{5}$ [2]
- 4 (a) Evaluate $\frac{1.3+2.9}{0.2}$. [1]
- (b) Evaluate $2\frac{1}{4} \times \frac{1}{5}$. [1]
 - (a) Evaluate $8 + 2 \times 1.3$. [1]
 - (b) Express 0.06 as a fraction, [1]
- 6 (a) Evaluate $\frac{2}{5} + \frac{3}{8}$ [1]
 - **(b)** Evaluate $1\frac{2}{3} \times 2\frac{1}{4}$, [1]
- 7 (a) Evaluate $12+6 \div 2-8$. [1]
 - (b) Evaluate 2.6×0.2 . [1]
- 8 Evaluate

- (a) $1.5 0.2 \times 4$, [1]
- (b) 4.2 ÷ 0.07.
- (a) Evaluate 6.3 ÷ 0.09. [1]
- (b) Find the decimal number that is [1] exactly halfway between 3.8 and 4.3
- 10 Evaluate
 - (a) $\frac{1}{2} \frac{3}{7}$, [1]
 - (b) $2\frac{2}{3} \times 1\frac{3}{4}$. [1]
- 11 Evaluate
 - (a) 25 18.3, [1]
 - (b) 1.7 × 0.03.

- 12 It is given that $\frac{2}{3}$, $\frac{8}{b}$ and $\frac{n}{39}$ are equivalent fractions. [1]
 - Find the value of d and the value of n. [1]
- 13 Evaluate [1]
 - (a) 10-7.56, (b) 0.105×0.2 .
- 14 (a) Evaluate 63 ÷ 0.9. [1]
 - (b) Add brackets to the expression in the answer space to make it correct. [1]
 - $1 + 72 \div 4 \times 2 = 10$
- 15 Express as a single fraction in its lowest terms,
 - (a) $\frac{8}{9} \times \frac{3}{4}$, [1]
 - **(b)** $\frac{3}{4} \frac{2}{3}$.
- 16 (a) Evaluate $\frac{4}{9} + \frac{2}{5}$. [1]
 - (b) Evaluate $1+0.6 \div 0.02$. [1]
- 17 (a) Evaluate $3 \times 1\frac{4}{7}$. [1]
- 18 (b) Evaluate 1.3×0.3. [1]
 - (a) Evaluate 0.03×0.3 . [1]
 - **(b)** Evaluate 5-2(3-1.4).
- 19 (a) Evaluate 12+8÷(9-5).
 - **(b)** Evaluate 0.018 ÷ 0.06 . [1]
- 20 **(a)** Evaluate $(2.05 + 1.4) \times 0.2$. [1]
 - **(b)** Evaluate $12-6 \div 3 + 4$. [1]
- 21 Arrange these numbers in order, starting with the smallest.
 - $\left\langle \frac{3}{4} \quad 0 \quad -1 \quad -\frac{17}{20} \quad -\frac{4}{5} \right\rangle$ [2]
- Write these numbers in order of size, starting with the smallest.
 - $\frac{13}{20}$ 0.7 $\frac{7}{12}$ 0.64 $\frac{5}{8}$ [2]

Write these numbers in order of size,	(a) Express 108 as a product of its prime factor .[1]
starting with the smallest.	(a) Express 108 as a product of its prime factor
$\frac{1}{3}$ 0.32 $\frac{15}{40}$ 0.3 $\frac{9}{31}$	(b) Written as products of their prime factors,
3 40 55 31	$N = 2^p \times 5^q \times 7^r$ and $500 = 2^2 \times 5^3$.
24 Write these numbers in order of size, starting with the smallest.	The highest common factor of N and 500 is $2^2 \times 5^2$.
2.1×10^{-3} 4.2×10^{-4} 1.7×10^{-5} 3.5×10^{-4} [2]	The lowest common multiple of N and 500 is $2^3 \times 5^3 \times 7$. [2]
22011	Find p , q and r .
25 Write these values in order, starting with the smallest.	33 Written as the product of its prime factors, 360 = 2 ³ × 3 ² × 5. (a) Write 108 as the product of its prime factors
$\frac{7}{200}$ 4% $\frac{3}{50}$ 0.03 $\frac{1}{20}$ [2]	 (a) Write 108 as the product of its prime factors. (b) Find the lowest common multiple of 108 and 360.
Statement of the statem	Give your answer as the product of its prime factors[1]
26 Write these numbers in order of size, starting with the smallest.	(c) Find the smallest positive integer k:
$\sqrt{17}$ 4 4.5 $\sqrt[3]{63}$ [2]	34 such that 360 k is a cube number[1]
27 000 00 00 00 00 00 00 00 00 00 00 00 0	(a) Express 198 as the product of its prime factors.
27 Write these values in order, starting with the smallest.	(b) $M = 2^2 \times 3 \times 5^2$ $N = 2^3 \times 3^2 \times 7$
$\frac{1}{30}$ 0.03 $\frac{1}{10}$ 5% $\frac{2}{25}$ [2]	(i) Find the largest number that divides exactly into M and N. [1]
29 (-) (2)	(ii) Find the smallest value of k , such that $M \times k$ is a cube number. [1]
28 (a) (i) Express 7056 as the product of its prime facto [2]	
(ii) Hence evaluate √7056. [1]	35 A number written as the product of
(b) $\sqrt{5\frac{1}{16}}$ can be expressed as the rational number $\frac{p}{q}$	its prime factors is $2^2 \times 5^2 \times 7$.
	(a) Evaluate this number. [1]
Find the value of p and the value of q . [1]	(b) The lowest common multiple of $2^2 \times 5^2 \times 7$
29 (c) Write down an example of an irrational number [1]	and another number, N, is $2^2 \times 3 \times 5^2 \times 7^2$.
(a) Express 154 as the product of its prime factors[1]	Find the lowest possible value of N . [1]
(b) Find the lowest common multiple of 154 and 49. [1]	36 (a) Express 96 as a product of its prime factors. [1]
30 The numbers 294 and 784, written as	(b) 24 is a common factor of 96 and the integer n . [1]
$294 = 2 \times 3 \times 7^2$, $784 = 2^4 \times 7^2$.	37 (a) Express 500 as the product of its prime factors.
Find	50.05
(a) the largest integer which is a factor	(b) $M = 2 \times 3^2$ $N = 2^4 \times 3^2$
of both 294 and 784,	Find the values of p and q when
(b) √784.	(b) $M = 2 \times 3^2$ $N = 2^4 \times 3^2$ Find the values of p and q when (i) $M \times N = 2^p \times 3^q$, (ii) $M \div N = 2^p \times 3^q$, (iii) $N^2 = 2^p \times 3^q$ [1]
Written as a product of prime factors, $168 = 2^3 \times 3 \times 7$.	(ii) $M \div N = 2^p \times 3^q$, [1]
.[1]	$N^2 = 2^p \times 3^q $
(a) Express 140 as a product of its prime factors.	38 (a) Express 1200 as the product of its prime factor [1]
.[1] (b) Find the highest common factor of 168 and 140.	
1966 (1664 1970) SA NY 6963 HINTI SHINDI SINGAPAN	(b) Find the smallest value of n, such that 120n is a square number. [1]
(c) Find the smallest positive integer, n, such that 168n is a square number.	39 (a) Write 168 as a product of its prime factors. [2]
is a square number.	(6)
	The highest common factor of 168 and N is 42. [2]
	Given that $200 < N < 300$, find the two possible values of N.
	\vee

49	It is given that $68.2 \times 0.235 = 16.027$. Hence evaluate	
	(a) 0.0682×2350 ,	[1]
	(b) 160.27 ÷ 0.0235.	[1]
50	(a) Evaluate $6 \times 3 + 8 \div 2$.	[1]
	(b) By writing each number correct to 1 significant figure, estimate the value of	19579-01
	$\frac{19.2 \times 9.09}{0.583}$.[2]
51	(a) Write 405 917 628 correct to three significant figures.	[1]
	(b) By writing each number correct to one significant figure, estimate the value of	200000
	$\frac{41.3}{9.79 \times 0.765}$.[2]
52	(a) Express 0.047 852 correct to two decimal places. Answer	[1]
	(b) Estimate the value of $\sqrt{200}$, giving your answer correct to two significant figures.	
	Answer	[1]
	(c) By writing each number correct to one significant figure, estimate the value of	
53	$\frac{212 \times 1.97^2}{0.763}$. Answer	[2]
<i>J J</i>	(a) Write 0.004 075 1 correct to two significant figures.	
	Answer	[1]
	(b) $\sqrt{131}$ lies between two consecutive integers. Complete the inequality below with these integers. Answer $< \sqrt{131} <$	[1]
	(c) Add brackets to the statement below to make it correct.	**************************************
	$3 \times 2 + 1^2 = 49$	[1]
54	By making suitable approximations, estimate the value of $\frac{\sqrt{35.78} \times \sqrt[3]{1005}}{0.3012}$. Show clearly the approximate values you use.	48
	Answer	[2]
55	(a) Write the value of 1234.567, correct to 2 significant figures.	
	Answer	
	(b) Write down an estimate for the value of $\sqrt{\frac{28}{\pi}}$.	
56	Answer	[1]
	By writing each number correct to one significant figure, estimate the value of	2)
	$\frac{29.3^2}{2.04 \times 0.874}$.	.[2]
57		
	By writing each number correct to 1 significant figure, calculate an estimate for the v	alue of
	$\frac{614.2 \times 0.0304}{19.88}$	
	$\frac{614.2 \times 0.0304}{19.88}$ $120 = 2^3 \times 3 \times 5$.[2]

By writing each number correct to 2 significant figures, estimate the value of $\frac{1212.3}{299.35 \times \sqrt{24.73}}.$ By writing each number correct to one significant figure, estimate the value of $\frac{71.8 - 32.4}{0.198^2}.$ By writing each number correct to 1 significant figure, estimate the value of $\frac{39.864 \times \sqrt{8.987}}{0.6013}.$ By writing each number correct to 1 significant figure, estimate the value of $\frac{39.864 \times \sqrt{8.987}}{0.6013}.$ By writing each number correct to 1 significant figure, estimate the value of $\frac{59.843^2}{20.13 \times 0.9024}.$

Answers

- 1 (a) 14 (b) 0.3
- 2 (a) $1\frac{9}{20}$ (b) 0.0602
- 3 (a) $\frac{25}{28}$ (b) 2
- 4 (a) 21 (b) $\frac{9}{20}$
- 5 (a) 10.6 (b) $\frac{3}{50}$
- 6 (a) $\frac{31}{40}$ (b) $3\frac{3}{40}$
- 7 (a) 7 (b) 0.52
- 8 (a) 0.7 (b) 60
- 9 (a) 70 (b) 4.05
- 10 (a) $\frac{1}{14}$ (b) $4\frac{2}{3}$
- 11 (a) 6.7 (b) 0.051
- ₁₂ d= 12 n= 26
- 13 (a) 2.44 (b) 0.021
- ₁₄ (a) 70
 - (b) 1+[72÷(4x2)]= 10
- 15 (a) $\frac{2}{3}$ (b) $\frac{1}{12}$
- 16 (a) $\frac{38}{45}$ (b) 31
- (a) $4\frac{5}{7}$ oe (b) [0.]39
- (a) 0.009((b) 1.8
- 19 **(a)** 14 **(b)** 0.30
- 20 (a) 0.65 (b) (0).45(c

- 21 -1, $\frac{-17}{20}$, $\frac{-4}{5}$, 0, $\frac{3}{4}$
- $\frac{7}{12} \quad \frac{5}{8} \quad 0.64 \quad \frac{13}{20} \quad 0.7$
- $\frac{9}{31} \ 0.3 \ 0.32 \ \frac{1}{3} \ \frac{15}{40}$
- 24 1.7 × 10⁻⁵, 3.5 × 10⁻⁴, 4.2 × 10⁻⁴,
 - $\times 10^{-4}$, 2.1×10^{-3}
- 25 $0.03 \frac{7}{200} 4\% \frac{1}{20} \frac{3}{50}$
- $\sqrt[3]{63}$, 4, $\sqrt{17}$, 4.5
- $0.03 \frac{1}{30} 5\% \frac{2}{25} \frac{1}{10}$
- 28 (a) (i) 2⁴ x 3² x 7² (ii) 84
 - (b) ± 9 , ± 4 (c) π
- 29 (a) 2 x 7 x 11 (b) 2 x 7² x 11
- 30 (a) 98 (b) 28
- 31 (a) 2² x 5 x7 (b) 28 (c) 42
- 32 (a) $2^2 \times 3^2$ (b) p=3, p=2, r=1
- 33 (a) $2^2 \times 3^3$ (b) $2^3 \times 3^3 \times 5$ (c) k = 75
- 34 (a) $2 \times 3^2 \times 11$ (b) (i) 12 (ii) 90
- 35 **(a)** 700 **(b)** 147; or 3 × 7²
- 36 **(a)** 2⁵ × 3

- **(b)** 72
- (a) $2^2 \times 5^3$ (b) (i) p - 5 and q = 3
 - (ii) p = -3 and p = 0
 - (iii) p = 8 and q = 4
- 38 (a) $2^{(*)} \times 5^2$ (b) | 30
- 39 (a) $2 \times 2 \times 2 \times 3 \times 7 \text{ or } 2^3 \times 3 \times 7$
 - (b) 210 and 294 only